大家好,浦东新区散射天线工作原理相信很多的网友都不是很明白,包括微波感应器的原理是什么也是一样,不过没有关系,接下来就来为大家分享关于浦东新区散射天线工作原理和微波感应器的原理是什么的一些知识点,大家可以关注收藏,免得下次来找不到哦,下面我们开始吧!
本文目录
如何理解天线的近场和远场
当前测量目标散射特性的基本方法有远场法、紧缩场法和近场法〔1〕。对于远场法,设D为待测目标的最大截面尺寸,r为发射天线与待测目标的距离,则当r≥2D2/λ时(λ为波长),可近似认为投射到待测目标上的电磁波是平面电磁波。同样,接收天线与待测目标的距离也应满足这一要求,以使接收天线接收散射远场。转动待测目标,测出相应的散射远场,即可确定目标的远场散射方向图,通过与标准目标进行比较,可以获得目标的RCS图。从理论上讲,这种方法可以测得目标的单站和双站散射特性,但这种方法需要宠大的测试场地,且由于待测目标的远场散射信号一般比较弱(对于低RCS目标则更是如此),因而给精确测量带来了很大的困难。紧缩场法是测量目标散射特性的一种有效的方法。对于单站RCS测量,通常采用一个紧缩场反射面天线产生准平面波对待测目标进行照射,转动待测目标,改变入射波相对于目标的入射方向,在接收端测出相应的散射信号即可确定目标的单站RCS。为了测出目标的双站RCS,则可以采用两个紧缩场反射面天线,一个发射,另一个接收,转动待测目标,测出接收天线处的散射信号,即可确定平面波以不同方向入射时目标的双站RCS,其双站角为两反射面天线口面法线间的夹角。但由于两个紧缩场反射面天线的位置是固定的,所以双站角也是固定的。采用紧缩场法,发射天线和接收天线与待测目标之间的距离不需要很大,这一点要优于远场法。近场散射测量技术是近场天线测量技术的发展和延伸。利用近场散射测量技术,可以在不转动目标的情况下测得扫描面外法向附近一个角域内的远场RCS,从而可以获得目标在不同双站角情况下的远场散射特性。一般情况下,目标的散射场所延伸的范围比较广,客观上要求扫描面的宽度应足够大,以减小截断误差。然而,在实际的双站近场散射测量中,扫描面的宽度总是有限的,而且截断电平不一定很低,有时甚至比较高。
什么是机动通信技术散射
散射通信是指利用对流层及电离层中的不均匀性对电磁波产生的散射作用,进行的超视距通信。分电离层散射通信,对流层散射通信和流星余迹通信。经过散射的电波能量向多个方向发送,在超视距远方接收点的信号能量将很微弱并有衰落现象,因此在散射通信系统中需要大功率发射机、高增益天线和高灵敏度接收机,并采用分集接收方式。
微波传输的基本原理
微波传输原理:在微波传输过程中,发射端将要发送的信号通过适当的调制成为一个微波信号,然后经向天线中输入进行辐射,该信号将以直线传播模式传播,到达接收端后在接收系统中经过相应的解调处理,恢复原信号。
其中,发射与接收间会存在传输路径衰减、折射、散射、反射等因素对信号质量产生影响。常见的微波传输技术包括天线、中继台和卫星通讯等。
微波感应器的原理是什么
微波感应器的原理是利用微波的特性进行检测和测量。微波感应器主要依赖于微波的反射、干涉和散射等现象,通过发射和接收微波信号来检测目标物体的位置、运动状态和物体的特征信息。具体原理如下:1.微波发射:微波感应器通过天线或微波发射器发射一束高频的微波信号。发射的微波信号通常具有一定的频率和功率。2.微波传播:发射的微波信号在空间中以电磁波的形式传播。微波信号在传播过程中会受到目标物体的反射、散射和干涉等影响。3.目标物体的反射与散射:当微波信号遇到目标物体时,部分微波会被目标物体反射回到接收器处,形成反射信号;同时,目标物体也会对微波信号进行散射,使得微波信号的能量发生改变。4.微波接收:微波感应器通过天线或接收器接收反射和散射的微波信号。接收器通常能够感知微波信号的频率、功率和相位信息。5.信号处理与分析:接收到的微波信号经过放大、滤波和解调等处理后,可以通过信号处理与分析算法来提取目标物体的位置、运动状态和物体特征等信息。通过对微波信号的发射和接收,微波感应器可以实现对目标物体的检测、距离测量、速度测量和成像等功能。这使得微波感应器在许多应用领域,如安全监控、智能交通、生物医学等方面发挥重要作用。
efid原理
RFID技术的基本工作原理并不复杂:标签进入磁场后,接收解读器发出的射频信号,凭借感应电流所获得的能量发送出存储在芯片中的产品信息(无源标签或被动标签),或者由标签主动发送某一频率的信号(ActiveTag,有源标签或主动标签),解读器读取信息并解码后,送至中央信息系统进行有关数据处理。
一套完整的RFID系统,是由阅读器与电子标签也就是所谓的应答器及应用软件系统三个部份所组成,其工作原理是Reader发射一特定频率的无线电波能量,用以驱动电路将内部的数据送出,此时Reader便依序接收解读数据,送给应用程序做相应的处理。
以RFID卡片阅读器及电子标签之间的通讯及能量感应方式来看大致上可以分成:感应耦合及后向散射耦合两种。一般低频的RFID大都采用第一种式,而较高频大多采用第二种方式。
阅读器根据使用的结构和技术不同可以是读或读/写装置,是RFID系统信息控制和处理中心。阅读器通常由耦合模块、收发模块、控制模块和接口单元组成。阅读器和应答器之间一般采用半双工通信方式进行信息交换,同时阅读器通过耦合给无源应答器提供能量和时序。
在实际应用中,可进一步通过Ethernet或WLAN等实现对物体识别信息的采集、处理及远程传送等管理功能。应答器是RFID系统的信息载体,应答器大多是由耦合原件(线圈、微带天线等)和微芯片组成无源单元。
扩展资料:
RFID技术中所衍生的产品大概有三大类:无源RFID产品、有源RFID产品、半有源RFID产品。
1、无源RFID产品发展最早,也是发展最成熟,市场应用最广的产品。比如,公交卡、食堂餐卡、银行卡、宾馆门禁卡、二代身份证等,这个在我们的日常生活中随处可见,属于近距离接触式识别类。其产品的主要工作频率有低频125KHZ、高频13.56MHZ、超高频433MHZ,超高频915MHZ。
2、有源RFID产品,是最近几年慢慢发展起来的,其远距离自动识别的特性,决定了其巨大的应用空间和市场潜质。在远距离自动识别领域,如智能监狱,智能医院,智能停车场,智能交通,智慧城市,智慧地球及物联网等领域有重大应用。有源RFID在这个领域异军突起,属于远距离自动识别类。产品主要工作频率有超高频433MHZ,微波2.45GHZ和5.8GHZ。
3、半有源RFID产品,结合有源RFID产品及无源RFID产品的优势,在低频125KHZ频率的触发下,让微波2.45G发挥优势。半有源RFID技术,也可以叫做低频激活触发技术,利用低频近距离精确定位,微波远距离识别和上传数据,来解决单纯的有源RFID和无源RFID没有办法实现的功能。简单的说,就是近距离激活定位,远距离识别及上传数据。
微波雷达原理
微波具有直线传播,易于反射,绕射能力差,传输性能好,不易受到其他电磁波干扰,受烟雾,火焰,灰尘,温度等的影响。微波雷达感应器是一种利用微波的特性来测量目标运动,距离,速度,方向,是否存在等信息的一种传感器。
其原理是微波通过发射天线辐射到自由空间,当电磁波遇到移动物体时会在移动物体的表面产生散射现象,部分电磁能量通过移动物体表面的反射到达探测器的接收天线,通过信号处理线路检测反射波的电磁参数,实现微波雷达感应功能。
微波雷达感应主要有CW(连续波),FMCW(调频连续波)两种模式。其中CW(连续波)可以探测目标的移动和目标的速度。FMCW(调频连续波)可以探测目标的移动,速度,距离和存在。
微波连续波感应是利用多普勒效应原理来检测移动目标的。
frd芯片原理
FRD芯片技术的基本工作原理并不复杂:标签进入磁场后,接收解读器发出的射频信号,凭借感应电流所获得的能量发送出存储在芯片中的产品信息(无源标签或被动标签),或者由标签主动发送某一频率的信号(ActiveTag,有源标签或主动标签),解读器读取信息并解码后,送至中央信息系统进行有关数据处理。
+ There are no comments
Add yours